A graph Laplacian based approach to semi-supervised feature selection for regression problems
نویسندگان
چکیده
Feature selection is a task of fundamental importance for many data mining or machine learning applications, including regression. Surprisingly, most of the existing feature selection algorithms assume the problems to address are either supervised or unsupervised, while supervised and unsupervised samples are often simultaneously available in real-world applications. Semi-supervised feature selection methods are thus necessary, and many solutions have been proposed recently. However, almost all of them exclusively tackle classification problems. This paper introduces a semisupervised feature selection algorithm which is specifically designed for regression problems. It relies on the notion of Laplacian score, a quantity recently introduced in the unsupervised framework. Experimental results demonstrate the efficiency of the proposed algorithm. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Graph Laplacian for Semi-supervised Feature Selection in Regression Problems
Feature selection is fundamental in many data mining or machine learning applications. Most of the algorithms proposed for this task make the assumption that the data are either supervised or unsupervised, while in practice supervised and unsupervised samples are often simultaneously available. Semi-supervised feature selection is thus needed, and has been studied quite intensively these past f...
متن کاملSemi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction
Semi-supervised regression based on the graph Laplacian suffers from the fact that the solution is biased towards a constant and the lack of extrapolating power. Based on these observations, we propose to use the second-order Hessian energy for semi-supervised regression which overcomes both these problems. If the data lies on or close to a low-dimensional submanifold in feature space, the Hess...
متن کاملSemi-supervised learning with sparse grids
Sparse grids were recently introduced for classification and regression problems. In this article we apply the sparse grid approach to semi-supervised classification. We formulate the semi-supervised learning problem by a regularization approach. Here, besides a regression formulation for the labeled data, an additional term is involved which is based on the graph Laplacian for an adjacency gra...
متن کاملSemi-Supervised Feature Selection with Constraint Sets
In machine learning classification and recognition are crucial tasks. Any object is recognized with the help of features associated with it. Among many features only some leads to classify object correctly. Feature selection is useful technique to detect such specific features. Feature selection is a process of selecting subset of features to reduce number of features (dimensionality reduction)...
متن کاملA Sampling Theory Perspective of Graph-based Semi-supervised Learning
Graph-based methods have been quite successful in solving unsupervised and semi-supervised learning problems, as they provide a means to capture the underlying geometry of the dataset. It is often desirable for the constructed graph to satisfy two properties: first, data points that are similar in the feature space should be strongly connected on the graph, and second, the class label informati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 121 شماره
صفحات -
تاریخ انتشار 2013